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Simple and exactly solvable model for queue dynamics
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Division of Mathematical Science, City College of Mie, Tsu, Mie 514-01, Japan
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~Received 17 June 1996!

We present a model for queue dynamics that is very simple but provides the essential property for such
dynamics. The model has the traveling cluster solution, which is derived analytically, as well as the homoge-
neous flow solution. The cluster solution is a simple example of a pattern formation in diffusion system, which
is seen in the phenomena of traffic jams and the slugging of granular flow.@S1063-651X~97!07205-X#

PACS number~s!: 05.60.1w, 05.70.Fh, 46.10.1z, 89.40.1k
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The concept of queue dynamics offers simple o
dimensional models for socioeconomic and complex mu
body physical systems, such as the problems of traffic
granular flow, pedestrians, gases, and fluids@1–8#. We pro-
pose a simple and exactly solvable model of this kind. O
model describes the general aspects of queue dynamics
can be widely applicable to those problems. But the follo
ing discussion is presented with the terminology of traf
problems.

The model is

ẍn5a$V~Dxn!2 ẋn%, ~1!

where

Dxn5xn212xn ~2!

for each car numbern (n51,2, . . . ).xn is the position of the
nth car,Dxn is the headway of that car. The overdot deno
the time derivative.a is a sensitivity constant, which we se
the same value for all drivers. The functionV(Dxn), which is
called the optimal velocity~OV! function, is

V~Dxn!5vmaxu~Dxn2d!, ~3!

where u is the Heaviside function. It decides the optim
velocity ~the safety velocity! according to the headway:~a! if
the headway is less thand, a car should stop;~b! if the
headway is larger thand, a car can accelerate to move wi
the maximum velocityvmax.

For both cases, the movement of each car is easily der
as follows.~a! In the case ofDxn,d,

xn~ t !5xn~ t0!1
ẋn~ t0!

a
$12e2a~ t2t0!%, ~4!

with the initial conditiont5t0 ,x(t0),ẋ(t0). ~b! In the case of
Dxn>d ,
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xn~ t !5xn~ t0!1vmax~ t2t0!2
vmax2 ẋn~ t0!

a
$12e2a~ t2t0!%,

~5!

with the same initial condition.
It is easy to understand that the system has stable fl

when the headway is far fromd. If the headway of all cars is
less thand, all cars stop. When all cars move with the sam
velocity vmax and with the headway larger thand, this ho-
mogeneous flow is also stable. The latter can be consid
as ‘‘free-driving flow’’ with no jam.

We are interested in obtaining the solution of the jam
flow. For this purpose, we should consider the two ba
processes of a car moving. Suppose a jam exists in a lan
car moves from the ‘‘free-driving region’’ into the jam an
another car escapes from the jam to the free-driving reg
These two processes can be expressed by the above tw
lutions with appropriate connection conditions. We assu
the ideal case: Cars stop in a jam with the same dista
DxJ (,d) and move at the maximum velocityvmax with the
same distanceDxF (.d) in the free-driving region.

First, we investigate the process of a car moving from
jam to a free-driving region. When the headway of the fro
car in a cluster isd, we sett5t0. At this time the position of
the car is set asx050. Thenth car in the jam moves as th
formulas

xn~ t !52nDxJ ~ t0<t,tn!, ~6!

xn~ t !52nDxJ1vmaxH ~ t2tn!2
1

a
@12e2a~ t2tn!#J

~ tn<t !, ~7!

wheretn is the time when the headway of thenth car isd.
After tn the car begins to move and escapes from jam.
note thatt0,t1,•••,tn21,tn,••• and tn is defined by
Dxn(tn)5d. This equation is written from Eqs.~6! and~7! as

DxJ1vmaxH ~ tn2tn21!2
1

a
@12e2a~ tn2tn21!#J 5d. ~8!r
7749 © 1997 The American Physical Society



itio

t
s

e
.
st

We

ua-

r
r be-

as

s
ith
f
s

is

s
me
ite

g

iv
he

h
.

7750 55BRIEF REPORTS
We have derived the sequence of equations for the defin
of tn (n51,2, . . . ), which has the solution fortn.tn21. It is
easily obtained by settingt5t12t05•••5tn2tn215•••

(.0); this is a unique solution, which is given by

DxJ1vmaxH t2
1

a
~12e2at!J 5d. ~9!

It is easily seen that the velocity of thenth car, ẋn(t) of
Eq. ~7!, converges tovmax for sufficient time (t@tn). This
means that the car reaches the free-driving region and
headway of this car becomesDxF , which is expressed a
limt→`Dxn(t)5DxF , using Eq.~7!. Thus we have obtained
the simple relation

DxJ1vmaxt5DxF . ~10!

Next, we make an analogous investigation for the proc
of a car moving from the free-driving region into the jam
When the headway of the car positioned just behind a clu
is d, we set t5t0 and the position of the carx050. The
nth car in the free-driving region moves as the formulas.

xn~ t !52nDxF1vmax~ t2t0! ~ t0<t,tn!, ~11!

xn~ t !52nDxF1vmaxH ~ tn2t0!1
1

a
@12e2a~ t2tn!#J

FIG. 1. Example of jam flow. The movements of five success
cars are shown by bold lines, which form a jam cluster. The das
lines show the movement of a jam cluster.

FIG. 2. Changing of car velocity of three successive cars. T
maximum velocity is set asvmax52. We can see a kinklike shape
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~ tn<t !, ~12!

wheretn is the time when the headway of thenth car isd.
After tn the car begins to decelerate and moves into jam.
note thatt0,t1,•••,tn21,tn,••• and tn is defined by
Dxn(tn)5d. As in the previous case, we can solve this eq
tion from Eqs. ~11! and ~12! with the conditions
t5t12t05•••5tn2tn215••• (.0) as

DxF1vmaxH 2t1
1

a
~12e2at!J 5d. ~13!

The velocity of thenth car, ẋn(t) of Eq. ~12!, converges
to 0 for sufficient time (t@tn), which means that the ca
reaches a cluster and stops. So the headway of this ca
comesDxJ , which is expressed as limt→`Dxn(t)5DxJ us-
ing Eq. ~12!. Again, we have obtained the same relation
Eq. ~10!, which means that the value oft is the same for
both processes we have discussed above.

Now we can solve Eqs.~9!, ~10!, and ~13!. Thus
DxF ,DxJ , andt can be expressed usinga,d, andvmax as

DxF5d1
vmaxt
2

, DxJ5d2
vmaxt
2

. ~14!

t is determined by the equation

at52~12e2at!, ~15!

which has the solutionat.1.59. As a result, each car i
moving in the same manner as the car moving in front w
the time delayt, which is proportional to the inverse o
sensitivity 1/a. The collective movement of these cars form
a cluster.

In Fig. 1 the movement of several successive cars
shown. Their orbits consist of Eqs.~11!, ~12!, ~6!, and ~7!
with the time delayt. Figure 2 shows the velocity of the car
with time development, which is easily obtained as the ti
derivatives of these formulas. Specifically, it takes an infin

TABLE I. Movement of two cars from a jam to a free-drivin
region.

t xn21 xn

t0,t,tn21 Dxn21,d a Dxn,d a

tn21,t,tn Dxn21.d b Dxn,d a

tn,t Dxn21.d b Dxn.d b

aFor Eq.~6!.
bFor Eq.~7!.

TABLE II. Movement of two cars from a free-driving region
into a jam.

t xn21 xn

t0,t,tn21 Dxn21.d a Dxn.d a

tn21,t,tn Dxn21,d b Dxn.d a

tn,t Dxn21,d b Dxn,d b

aFor Eq.~11!.
bFor Eq.~12!.
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time for the car’s velocity to reachvmax or 0. Practically, an
appropriate finite time is enough to be considered as infin
as can be seen in Fig. 2. In Fig. 1 a cluster moves backwar
against the direction of the moving car . The velocity of t
cluster is defined by the moving of the front position of t
cluster, which is obtained by Eq.~6! or ~7! as

v jam5
xn~ tn!2xn21~ tn21!

tn2tn21
52

DxJ
t

. ~16!

The same result is given by the moving of the rear point
the cluster from Eq.~11! or Eq. ~12! with Eq. ~10!.

The profile of a jam’s flow is clearly described as t
trajectory in the phase space of headway and velo
(Dx,ẋ). In order to draw this, it is enough to check th
movement of two successive cars.

First, we check the process of a car moving from a jam
a free-driving region. The moving of the (n21)th andnth
cars is divided into three stages presented in Table I. Acc
ing to this table, we can obtain the relation betweenDxn and
ẋn using Eqs.~14! and~15!. ~i! t0<t,tn21: The headway of
thenth car isDxJ and its velocity is 0. Thenth car stays at
point (DxJ ,0!, which means that the car stays in a jam.~ii !
tn21<t,tn : The velocity ẋn is 0. The headway change
DxJ<Dxn,d. The trajectory is the line (DxJ,0) –(d,0). ~iii !
tn<t,`: In this period, we derive the relatio
Dxn5d1t ẋn/2(0< ẋn,vmax). The trajectory is the line
(d,0) –(DxF ,vmax).

Next, we turn to the car moving from a free-driving r
gion into a jam. The process is also divided into three sta
in Table II. ~i! t0<t,tn21: The headway of thenth car is
DxF and its velocity isvmax. Thenth car stays at the poin
(DxF ,vmax), which means that the car moves in a fre
driving region. ~ii ! tn21<t,tn : The velocity ẋn is vmax.
The headway changesDxF>Dxn.d. Thus the trajectory is
the line (DxF ,vmax) –(d,vmax). ~iii ! tn<t,`: In this period
we derive the relationDxn5DxJ1t ẋn/2 (vmax> ẋn.0).
The trajectory is the line (d,vmax) –(DxJ,0).

We summarize the above results in Fig. 3. The car mo
ment of the jam’s flow solution is represented as the squ
shaped closed loop in phase space. All cars are moving a
this loop in a stable way, which can be understood as a l
cycle. A similar profile to this model was seen in our pre
ous work~the OV model!, whose OV function is the hyper

FIG. 3. Hysteresis loop of jam flow together with the OV fun
tion V(Dx). Each car moves along this loop in the direction of t
arrow with time development.
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bolic tangent instead of Eq.~3!. We called that a ‘‘hysteresis
loop,’’ which was found by numerical simulation. The loo
is attractive in phase space@4#.

The size of the hysteresis loopDxF2DxJ5vmaxt, which
determines the amplitude of the cluster, is characterized
the induced time delayt. It is proportional to the inverse o
the sensitivity 1/a. The loop shrinks to the vertical line
Dx5d (0, ẋ<vmax) asa→`, in which case the jam doe
not appear. We should note that all the above results for
cluster solution do not depend on the total number of c
and the length of the lane. We do not need to set perio
boundary conditions on the lane.

Finally, we check the above results against the simulat
data. The aim is to know how well the analytic solution
realized, which we have obtained by the infinite-time a
proximation. We set the parameters of the model asa51,
d52, andvmax52. In this caseDxF.3.59 andDxJ.0.41
are derived from Eq.~14!. The simulation is performed by
putting cars on the circuit whose lengthL5200 and the total
number of carsN5100.

Figure 4 is a plot of the position of all cars with tim
development. The initial condition is set as all cars are u
formly distributed with the distanceDx5L/N52 (5d) and
move with the same velocityẋ51. In this case, the initial
movement is highly unstable. We can observe the growth
clusters, which are stably moving backward with the sa
velocity, a value that is in agreement with the analytic res
~16!.

Figure 5 is a snapshot of the headway distribution of
jam’s flow on the circuit. In this case cars are gathered in o
big stable cluster, whose simulation is performed with a d
ferent initial condition from the previous case. In both cas
the values of the headway in the jam and the free-driv
region are the same as the analytic results. The total num
of cars in jams is denoted byNJ , which is given by the
following formula, which does not depend on the initial co
ditions:

~N2NJ!DxF1NJDxJ.L. ~17!

The numerical result ofNJ is the same as that of the analyt
prediction.

FIG. 4. Simulation data of the positions of all cars in the circ
with time development. The solid line shows the orbit of a sam
car.
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Figure 6 is a plot of car points in phase space accumula
over the steps after the cluster becomes stable. The
points are on the hysteresis loop, which is derived anal
cally. We note that the hysteresis loop is the same for e
cluster in both simulations. Actually, this profile does n
depend on the initial condition nor on the car densityN/L.
This fact is understood by the derivation of analytic resu
In conclusion, all simulation data show that the jam’s flow
realized just as the analytic solution predicts.

We should discuss the stability of the jam’s flow soluti
and of the homogeneous flow solution. The stability of t
homogeneous flow is guaranteed by the linear analysis@4#. It
is valid in the case that the averaged headway~the inverse of
the car density! is far fromd. However, the value is close t
d, the homogeneous flow is unstable, and the jam’s flow

FIG. 5. Simulation data of the distribution of headway of ea
car. The data agree with the analytic results:DxJ.0.41 and
DxF.3.59.
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organized with time development, which is observed in F
4, as an example. The car density is the control param
even in our simple model and the cluster appears when
density exceeds some critical value.

To summarize, we have proposed a simple model
queue dynamics, in which the traveling cluster solution~the
jam’s flow! is derived analytically. The cluster has the profi
of a limit cycle dynamics. This shows the ‘‘delay of th
changing motion’’ of each car, which means the balance
car’s moving into and out of a cluster, and this microsco
balance results in the self-organization of a cluster in
diffusion system.

We thank K. Nagel and M. Schreckenberg for suggest
to us the idea of this work through discussion with Y.S. W
should comment that T. Nagatani has worked with anot
simple cellular automaton model based on the OV model@9#.

FIG. 6. Simulation data of the car points of jam flow in th
phase space together with the hysteresis loop~Fig. 3! and the OV
function.
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