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Simple and exactly solvable model for queue dynamics
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We present a model for queue dynamics that is very simple but provides the essential property for such
dynamics. The model has the traveling cluster solution, which is derived analytically, as well as the homoge-
neous flow solution. The cluster solution is a simple example of a pattern formation in diffusion system, which
is seen in the phenomena of traffic jams and the slugging of granular[B#M63-651X97)07205-X]

PACS numbgs): 05.60:+w, 05.70.Fh, 46.10-z, 89.40+k

The concept of queue dynamics offers simple one-

. . . - . Umax™ ).(n(tO) —a(t—tg)
dimensional models for socioeconomic and complex multi- x,(t) =X,(tg) + v maft—tg) — ———{1—e o},
body physical systems, such as the problems of traffic and a ®)
granular flow, pedestrians, gases, and fliitis8]. We pro-

pose a simple and exactly solvable model of this kind. Our . - .
jth the same initial condition.

model describes the general aspects of queue dynamics alt It ¢ derstand that th ; h table fi
can be widely applicable to those problems. But the follow- h |shea§y 3 un _er? ar]] maf her;sysdem a]:s Tla € Tlows
ing discussion is presented with the terminology of traffic Wen the headway is far from If the headway of all cars is
problems. less thard, all cars stop. When all cars move with the same

The model is velocity v ., @and with the headway larger thah this ho-
mogeneous flow is also stable. The latter can be considered
as “free-driving flow” with no jam.

Xn=a{V(AXn) = Xn}, @ We are interested in obtaining the solution of the jam'’s
h flow. For this purpose, we should consider the two basic
where processes of a car moving. Suppose a jam exists in a lane. A
car moves from the “free-driving region” into the jam and
AXy=Xp-1— Xy 2

another car escapes from the jam to the free-driving region.
These two processes can be expressed by the above two so-

for each car number (n=1,2, ... .).x, is the position of the 1, sions with appropriate connection conditions. We assume
nth car,Ax, is the headway of that car. The overdot denotesyq igeal case: Cars stop in a jam with the same distance

the time derivativea is a sensitivity constant, which we set , (<d) and move at the maximum velocity, ., with the
the same value for all drivers. The functisi§Ax,), which is sarfne distanca x. (>d) in the free-driving regiagn.

called the optimal velocityOV) function, is First, we investigate the process of a car moving from a
jam to a free-driving region. When the headway of the front
car in a cluster igl, we sett=t,. At this time the position of

. . ) ) ) the car is set axy=0. Thenth car in the jam moves as the
where 6§ is the Heaviside function. It decides the optimal {5 mulas

velocity (the safety velocityaccording to the headwaia) if
the headway is less tham, a car should stop(b) if the
headway is larger thad, a car can accelerate to move with
the maximum velocity ax- 1
For both cases, the movement of each car is easily derived _ —a(t—t,)
' Xp(t)=—nAXx;+ t—t,)—=[1—e n
as follows.(a) In the case ofAx,<d, (V) 7 Umad (1= t) a[ ]

V(AXq) =vmaxf(AXp—d), ©)

Xp(1)=—nAx; (tpst<t,), (6)

Xn(to) (th=<t), (7)

a

Xn(t) =Xq(to) + {1-e 3"}, (4)
wheret,, is the time when the headway of timh car isd.

with the initial conditiont =tq,X(to),X(to). (b) In the case of After t,, the car begins to move and escapes fro_m jam. We
Ax.=>d note thatt,<t,;<-.-<t,_ <t,<--- andt, is defined by
4 ’ AX,(t,) =d. This equation is written from Eq#6) and(7) as

*Present address: Bio-Mimetic Control Research Center 1 —a(t,—
(RIKEN), Nagoya 463, Japan AXyH U max (t”_tnfl)_a[l_e o] =d. (@®)
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TABLE |. Movement of two cars from a jam to a free-driving

region.
t Xn-1 Xn
c
2 to<t<t,_; Ax,_;<d? Ax,<d?
§ t_ <t<t, Axp_>d P Ax,<d?
t,<t Axp_>d P Ax,>d P
aFor Eq.(6).
bFor Eq.(7).

(t,<t), (12

Time

_ _ . wheret, is the time when the headway of tim¢h car isd.
FIG. 1. Example of jam flow. The movements of five SUCCeSSIVeAftar t the car begins to decelerate and moves into jam. We
cars are shown by bold lines, which form a jam cluster. The dasheﬂo,[e tf:att <t < <t <t < andt, is defined by
i ; osbiss- <1 <stp<--- n
lines show the movement of a jam cluster. Ax,(t,)=d. As in the previous case, we can solve this equa-

We have derived the sequence of equations for the definitioHOn from Egs. (11) and (12 with the conditions

oft, (n=1,2,...), which has the solution fd,>t, ,.Itis ’ 1~ fo= " =th=thy=--- (>0) as
easily obtained by setting=t,;—tg=---=t,—t,_1=--- 1
(>0); this is a unique solution, which is given by AXp+Umad — 7+ 5(1_6*617) =d. (13
1 » . .
AXyFvmay 7= Z(1—€ %) =d. 9 The velocity of thenth car,x,(t) of Eq. (12), converges

to 0 for sufficient time {>t,), which means that the car

. . . : reaches a cluster and stops. So the headway of this car be-
£ It(|7s) e:g’r']lze?ezg that th;yzlﬁf(f:i@i/e% tttlrﬁz (zz;r’txi‘(t%_h?; comesAx;, which is expressed as lim..Ax,(t)=AX; us-

4. {7, 9 @ max n: ing Eqg. (12). Again, we have obtained the same relation as

means that the car reaches the free-driving region and thlgq (10), which means that the value ofis the same for
headway of this car becomesxz, which is expressed as bot.h pr(;cesses we have discussed above

IimH_wan(t)=A_xF, using Eq.(7). Thus we have obtained Now we can solve Eqgs(9), (10), and (13. Thus
the simple relation Axg,AX;, and7 can be expressed usirgd, andv ,,, as

AAXJ*‘UnmxT:HAXF. (10)
v T v T
L Axp=d+ —o,  Axy=d— —= (14)
Next, we make an analogous investigation for the process 2 2

of a car moving from the free-driving region into the jam. ) )
When the headway of the car positioned just behind a clusteF i determined by the equation
i = h iti f th =0. Th
is d, we sett=t, and the position of the caxy=0 e ar—2(1—e-a"), (15

nth car in the free-driving region moves as the formulas.

X (1) = — NAXe -+ t—t to<t<t.), 11 whic.h hgs the solutiomr=1.59. As a result, egch car Lf;
(V) Frumadt=to)  (to ) a1 moving in the same manner as the car moving in front with
the time delayr, which is proportional to the inverse of

Xn(£)= — NAXg+ U may (tn_t0)+l[1_e—a<t—tn)] sensitivity 1A. The collective movement of these cars forms
a a cluster.
In Fig. 1 the movement of several successive cars is
2 shown. Their orbits consist of Eq&ll), (12), (6), and (7)
with the time delayr. Figure 2 shows the velocity of the cars
s with time development, which is easily obtained as the time
. derivatives of these formulas. Specifically, it takes an infinite
§ 1 TABLE Il. Movement of two cars from a free-driving region
> into a jam.
0.5
t Xn-1 Xn
0 ' to<t<th_; Axp_,>d? Ax,>d?
5 0 5 10 15 20 25 30 t,_,<t<t, Ax, ,<dP Ax,>d?
Time t,<t Ax,_;<d® Ax,<d®

FIG. 2. Changing of car velocity of three successive cars. ThéFor Eq.(11).
maximum velocity is set as,=2. We can see a kinklike shape. °For Eq.(12).
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FIG. 3. Hysteresis loop of jam flow together with the OV func- 0

tion V(Ax). Each car moves along this loop in the direction of the

arrow with time development. FIG. 4. Simulation data of the positions of all cars in the circuit

with time development. The solid line shows the orbit of a sample
time for the car’s velocity to reach,,,, or 0. Practically, an car.
appropriate finite time is enough to be considered as infinite,

as can be seen in Fig. 2. In Fifj a cluster moves backward holic tangent instead of E43). We called that a “hysteresis

against the direction of the moving car . The velocity of thejoop,” which was found by numerical simulation. The loop
cluster is defined by the moving of the front position of thejs attractive in phase spa¢4].

cluster, which is obtained by E¢6) or (7) as The size of the hysteresis lodXg — AX;= v a7, Which
determines the amplitude of the cluster, is characterized by
v :Xn(tn)_xnfl(tn*l) __ ﬂ (16) the induced time delay. It is proportional to the inverse of
Jam th—th_1 T the sensitivity 14. The loop shrinks to the vertical line

x=d (0<X<v) asa—, in which case the jam does
X not appear. We should note that all the above results for the
the cluster from Eq(11) or Eg. (12) with Eq. (10). cluster solution do not depend on the total number of cars
_The proflle of a jam's flow is clearly described as th? and the length of the lane. We do not need to set periodic
trajectory in the phase space of headway and Veloc'%oundary conditions on the lane.
(Ax,x). In order to draw this, it is enough to check the  Finally, we check the above results against the simulation
movement of two successive cars. data. The aim is to know how well the analytic solution is
First, we check the process of a car moving from a jam taealized, which we have obtained by the infinite-time ap-
a free-driving region. The moving of thea{-1)th andnth  proximation. We set the parameters of the modehasl,
cars is d'|V|ded into three stag_es presen'ged in Table I. Accortj=2, andv,,,=2. In this caseAxg=3.59 andAx;=0.41
ing to this table, we can obtain the relation betwéen and  are derived from Eq(14). The simulation is performed by
X, using Eqs(14) and(15). (i) ty<t<t,_;: The headway of putting cars on the circuit whose lengdth- 200 and the total
the nth car isAx; and its velocity is 0. Thath car stays at number of cars\=100.
point (Ax;,0), which means that the car stays in a jain). Figure 4 is a plot of the position of all cars with time
t,_,<t<t,: The velocityx, is 0. The headway changes development. The initial condition is set as all cars are uni-
Ax;<Ax,<d. The trajectory is the lineXx;,0)—(d,0). (i) ~ formly distributed with the distancax=L/N=2 (=d) and
tyst<ew: In this period, we derive the relation move with the same velocity=1. In this case, the initial
AX,=d+ %,/2(0<X,<vma). The trajectory is the line Movementis highly unstable. We can observe the growth of
(d,0)—(AXg U ma)- clusters, which are stably moving backward with the same
Next, we turn to the car moving from a free-driving re- Velocity, a value that is in agreement with the analytic result
gion into a jam. The process is also divided into three stage%m)-_ ) o
in Table II. (i) ty<t<t,_,: The headway of thath car is Figure 5 is a snapshot of the headway distribution of the

Axg and its velocity isv .. Thenth car stays at the point jam’s flow on the circuit. In this case cars are gathered in one
(AXg v ma), Which means that the car moves in a free-Dig stable cluster, whose simulation is performed with a dif-

driving region. (i) t,_;<t<t,: The veIocitykn iS o ferent initial condition from the previous case. In both cases,

The headway changesx.=Ax,>d. Thus the trajectory is the values of the headway in the jam and the free-driving
the line (AXe 0 ma)—(d,01ma). (i) t,<t<ce: In this period region are the same as the analytic results. The total number
U'ma; Umax/ - n— .

. ) - . of cars in jams is denoted bi;, which is given by the
we derive the relationAx,=AX;+ 7Xp/2 (U ma=Xn>0). . . L i
The trajectory is the lined,v ,u)—(AX,.0). following formula, which does not depend on the initial con

. A ditions:
We summarize the above results in Fig. 3. The car move-

ment of the jam’s flow solution is represented as the square-

shaped closed loop in phase space. All cars are moving along (N=Ny)Axe+N;Ax=L. 17)
this loop in a stable way, which can be understood as a limit

cycle. A similar profile to this model was seen in our previ- The numerical result dfl; is the same as that of the analytic
ous work(the OV mode), whose OV function is the hyper- prediction.

The same result is given by the moving of the rear point o
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phase space together with the hysteresis I¢ag. 3 and the OV
FIG. 5. Simulation data of the distribution of headway of eachfunction.
car. The data agree with the analytic resultsx;=0.41 and

AXp=3.59. organized with time development, which is observed in Fig.

4, as an example. The car density is the control parameter

Figure 6 is a plot of car points in phase space accumulategven in our simple model and the cluster appears when the
over the steps after the cluster becomes stable. The dagrnsity exceeds some critical value.
points are on the hysteresis loop, which is derived analyti- To summarize, we have proposed a simple model for
cally. We note th_at the_hysteresis loop i_s the same for eaCHueue dynamics, in which the traveling cluster solutitire
cluster in both simulations. Actually, this profile does notianys fiow) is derived analytically. The cluster has the profile
depend on the initial condition nor on the car dens#it.. ot 5 |imit cycle dynamics. This shows the “delay of the
This fact is understood by the derivation of analytic results.changing motion™ of each car. which means the balance of
In conclusion, all simulation data show that the jam’s flow iscar's moving into and out of a' cluster, and this microscopic

reaIV:/z:(;{gztl dazi;ﬁgﬁ:gg;&'ﬁ“"& fggd:r;ss flow solution balance results in the self-organization of a cluster in the
y ] diffusion system.

and of the homogeneous flow solution. The stability of the
homogeneous flow is guaranteed by the linear analygigt We thank K. Nagel and M. Schreckenberg for suggesting
is valid in the case that the averaged headytiag inverse of  to us the idea of this work through discussion with Y.S. We
the car densityis far fromd. However, the value is close to should comment that T. Nagatani has worked with another
d, the homogeneous flow is unstable, and the jam’s flow issimple cellular automaton model based on the OV mg@lel
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